Current Appointment:

Professor, State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences

Deputy director of State Key Laboratory of Resources and Environment Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences

Winner of the National Science Fund for Distinguished Young Scholars (2015)

Education:

¨        From September 1993 to July 1998: Studied for Doctoral degree in China University of Geosciences (Wuhan)   

¨        From September 1989 to July 1993: Studied for bachelor’s degree in China University of Geosciences (Wuhan)  

Work Experience:

¨        Since December 2015: Has been working as the deputy director of State Key Laboratory of Resources and Environment Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences.

¨        Since July 2014: Has been working as a leading professor at University of Chinese Academy of Sciences.

¨        From December 2013 to December 2015: Work as the deputy director of Geospatial Analysis and System Simulation Research Office, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences.

¨        From September 2012 to March 2013: Worked as a senior visiting scholar at Senseable City Lab, Massachusetts Institute of Technology (USA).

¨        From February 2007 to August 2007: Worked as a visiting scholar at Department of Mathematics, Imperial College London (UK).

¨        From July 2000 to November 2013: Worked as an associate research fellow at Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences.

¨        From August 1998 to June 2000: Worked as a postdoctoral fellow at Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences.

Areas of Specialization:

¨        Research field: Geographical Information Sciences

¨        Research interests: Geo-spatial big data mining, geostatistics, city sensing, text big data mining

Major scientific research achievements:

He has constructed the decomposition theory of complex point process data, which could decompose arbitrary complex point process data into homogeneous point process with different intensity. The theory fundamentally solves the problem of the pattern extraction from point process data, which can be compared with the effect of Fourier transform on the elementary function. Therefore, the theory is also called the “Fourier Transform Theory of Point Process Data”.

He has been studying the spatiotemporal activity trajectory of urban residents on different scales, and has extracted the spatiotemporal pattern of the migration sequence of residents, constructed the positive and inversion relationship between the mobile phone data of urban residents and the urban land use, uncovered the directional heterogeneity of an aggregated mobile phone network, and put forward the reasoning model which inverts customer behavior and characteristics based on indoor location data.

Academic awards:

¨        2019: Award for Scientific and Technological Progress of Surveying and Mapping, first prize

¨        2019: Award for Outstanding Achievements in Scientific Research in Higher Education Institutions, second prize

¨        2017: Zhu Li Yuehua Award for Outstanding Teacher, Chinese Academy of Sciences

¨        2016: Outstanding Member of the Youth Promotion Association of the Chinese Academy of Sciences

¨        2011: National Youth Geoscience Award

¨        2008: Lu Jiaxi Young Talent Award, Chinese Academy of Sciences

¨        2007: Beijing Nova program

¨        2019/2010/2006/2004: Excellent courses at the University of the Chinese Academy of Sciences

Research grants:

¨        Big Geodata Mining and Spatiotemporal Pattern Discovery. National Key R&D Program of China, No. 2017YFB0503600, Jul 2017-Jul 2021, CNY46,970,000 (Principal Investigator)

¨        Spatiotemporal Data Mining. The National Science Fund for Distinguished Young Scholars, No. 41525004, Jan 2016-Dec 2020, CNY4,000,000 (Principal Investigator)

¨        Pan-In-Space Information Association Update and Subject-Oriented Spatial Data Mining Analysis Technology Research. National High-tech R&D Program of China (863 Program), No. 2012AA12A403, Jun 2012-Dec 2015, CNY3,740,000 (Principal Investigator)

¨        Geographical Spatiotemporal Data Analysis. National Natural Science Foundation of China, No, 41421001, Jan 2015-Dec 2020, CNY12,000,000

¨        Mining Model of Anomaly and Association Patterns for Spatiotemporal Trajectory Data. National Natural Science Foundation of China, No. 41171345, Jan 2012-Dec 2015, CNY580,000 (Principal Investigator)

¨        Unstructured Emergency Multimedia Data Mining. National High-tech R&D Program of China (863 Program), No. 2009AA12Z227, 2009-2010

¨        Spatial Soft Information Collaborative Statistical Method. National Natural Science Foundation of China, No. 40601078, 2007- 2009

¨        Spatial Data Cognitive Mode and Massive Spatial Database Knowledge Discovery. National Basic Research Program of China (973 Program), No. 2006CB701305, 2006-2010

¨        Beijing Nova program. 2007-2010. (Principal Investigator)

Books:

¨        Shaw, S., Fang, Z., Chen, B., …, & Pei, T., et al. (2018). Spatiotemporal GIS Analysis of City Population Activity. Beijing: Science Press. (In Chinese)

¨        Leng, S., Gao, X., Pei, T., Zhang, G. (2016). The Geographical Sciences During 1986-2015From the Classics to the Frontiers. Beijing: The Commercial Press. (In Chinese)

¨        Leng, S., Gao, X., Pei, T., Zhang, G. (2016). The Geographical Sciences During 1986-2015From the Classics to the Frontiers. Berlin: Springer. (In English)

¨        Leng, S., Tan, W., Li, Y., Jia, Z., Gao, X., Pei, T. (2016). The Soils Sciences During 1986-2015From the Classics to the Frontiers. Beijing: The Commercial Press. (In Chinese)

¨        Zhou, C., Pei, T., et al. (2011). Principles of Spatial Analysis of Geographic Information Systems. Beijing: Science Press. (In Chinese)

¨        Zhu, A., Li, B., Pei, T., et al. (2008). The model and method of fine soil resource census. Beijing: Science Press. (In Chinese)

¨        Zhou C., Pei, T., Li, Q., et al. (2005). Integrated Seismic Catalog Database and Its Application Research. Beijing: China Water&Power Press. (In Chinese)

Representative publications:

1.      Shu, H., Pei, T.*, Song, C., Chen, X., Guo, S., Liu, Y., . . . Zhou, C. (2020). L-function of geographical flows. International Journal of Geographical Information Science. Doi: 10.1080/13658816.2020.1749277.

2.      Pei, T.*, Song, C., Guo, S., Shu, H., Liu, Y., Du, Y., Ma, T., & Zhou, C. (2020). Big geodata mining: Objective, connotations and research issues. Journal of Geographical Sciences, 30(2):251-266.

3.      Song C., Pei T.*, and Shu H. (2020). Identifying flow clusters based on density domain decomposition. IEEE Access, 8:5236-5243.

4.      Ma, T., Sun, S., Fu, G., Hall, J. W., Ni, Y., He, L., Yi, J., Zhao, N., Du, Y., Pei, T., Cheng, W., Song, C., Fang, C., & Zhou, C. (2020). Pollution exacerbates China’s water scarcity and its regional inequality. Nature Communications, 11(1), 650-658.

5.      Ma, T., Zhao, N., Ni, Y., Yi, J., Wilson, J. P., He, L., Du, Y., Pei, T., Zhou, C., Song, C., and Cheng, W. China’s improving inland surface water quality since 2003. Science Advances, 6(1), 3798-3808.

6.      Ma, J., Pei, T.*, Dong, F., Dong, Y., Yang, Z., Chen, J., ... & Zhang, Z. (2019). Spatial and demographic disparities in short stature among school children aged 7–18 years: a nation-wide survey in China, 2014. BMJ open, 9(7), e026634. DOI: 10.1136/bmjopen-2018-026634.

7.      Zhen, J., Pei, T.*, & Xie, S. (2019). Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil. Science of The Total Environment, 659, 363-371.

8.      Guo, S., Yang, G., Pei, T.*, Ma, T., Song, C., Shu, H., Du, Y., & Zhou, C. (2019). Analysis of factors affecting urban park service area in Beijing: Perspectives from multi-source geographic data. Landscape and urban planning, 181, 103-117.

9.      Shu, H., Pei, T.*, Song, C., Ma, T., Du, Y., Fan, Z., & Guo, S. (2019). Quantifying the spatial heterogeneity of points. International Journal of Geographical Information Science, 33(7), 1355-1376.

10.    Guo, S., Song, C., Pei, T.*, Liu, Y., Ma, T., Du, Y., ... & Wang, Y. (2019). Accessibility to urban parks for elderly residents: Perspectives from mobile phone data. Landscape and Urban Planning, 191, 103642.

11.    Song, C., Pei, T.*, Ma, T., Du, Y., Shu, H., Guo, S., & Fan, Z. (2019). Detecting arbitrarily shaped clusters in origin-destination flows using ant colony optimization. International Journal of Geographical Information Science, 33(1), 134-154.

12.    Liu, Y., Cheng, D., Pei, T.*, Shu, H., Ge, X., Ma, T., ... & Xu, L. (2019). Inferring gender and age of customers in shopping malls via indoor positioning data. Environment and Planning B: Urban Analytics and City Science, 2399808319841910.

13.    Ma, T., Pei, T.*, Song, C., Liu, Y., Du, Y., & Liao, X*. (2019). Understanding geographical patterns of a city’s diurnal rhythm from aggregate data of locationaware services. Transactions in GIS, 23(1), 104-117.

14.    Ma, J., Niu, W., Chen, J., Liu, S., Dong, Y., Yang, Z., ... & Pei, T*. (2019). Education, Altitude and Humidity Can Interactively Explain Spatial Discrepancy and Predict Short Stature in 213,795 Chinese School Children. Frontiers in pediatrics, 7, 425. DOI: 10.3389/fped.2019.00425. eCollection 2019.

15.    Liu, Y., Pei, T.*, Song, C., Shu, H., Guo, S., & Wang, X. (2019). Indoor Mobility Interaction Model: Insights into the Customer Flow in Shopping Malls. IEEE Access, 7, 138353-138363.

16.    Song, C., & Pei, T*. (2019). Decomposition of Repulsive Clusters in Complex Point Processes with Heterogeneous Components. ISPRS International Journal of Geo-Information, 8(8), 326. DOI: 10.3390/ijgi8080326

17.    Wang, W., Pei, T.*, Chen, J., Song, C., Wang, X., Shu, H., ... & Du, Y. (2019). Population Distributions of Age Groups and Their Influencing Factors Based on Mobile Phone Location Data: A Case Study of Beijing, China. Sustainability, 11(24), 7033. DOI: 10.3390/su11247033.

18.    Fan, Z., Pei, T.*, Ma, T., Du, Y., Song, C., Liu, Z., & Zhou, C. (2018). Estimation of urban crowd flux based on mobile phone location data: A case study of Beijing, China. Computers, Environment and Urban Systems, 69, 114-123.

19.    Liu, X., Pei, T.*, Zhou, C., Du, Y., Ma, T., Xie, C., & Xu, J. (2018). A systems dynamic model of a coal-based city with multiple adaptive scenarios: A case study of Ordos, China. Science China Earth Sciences, 61(3), 302-316.

20.    Chen, J., Pei, T.*, Shaw, S. L., Lu, F., Li, M., Cheng, S. F., Liu, X., & Zhang, H. (2018). Fine-grained prediction of urban population using mobile phone location data. International Journal of Geographical Information Science, 32(9): 1770-1786.

21.    Wan, Y., Zhou, C., & Pei, T*. (2017). Semantic-geographic trajectory pattern mining based on a new similarity measurement. ISPRS International Journal of Geo-Information, 6(7), 212-229.

22.    Ma, X., Pei, T.*, Song, C., & Zhou, C. (2016). A new assessment model for evacuation vulnerability in urban areas. International Journal of Geographical Information Science, 30(12), 2401-2420.

23.    Shu, H., Song, C., Pei, T.*, Xu, L., Ou, Y., Zhang, L., & Li, T. (2016). Queuing Time Prediction Using WiFi Positioning Data in an Indoor Scenario. Sensors, 16(11), 1958-1977.

24.    Yang, G., Song, C., Shu, H., Zhang, J., Pei, T.*, & Zhou, C. (2016). Assessing patient bypass behavior using taxi trip origin–Destination (OD) data. ISPRS International Journal of Geo-Information, 5(9), 157-176.

25.    Pei, T., Wang, W., Zhang, H., Ma, T., Du, Y., & Zhou, C. (2015). Density-based clustering for data containing two types of points. International Journal of Geographical Information Science, 29(2), 175-193.

26.    Ma, T., Zhou, Y., Zhou, C., Haynie, S., Pei, T., & Xu, T. (2015). Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sensing of Environment, 158, 453-464.

27.    Pei, T., Sobolevsky, S., Ratti, C., Shaw, S. L., Li, T., & Zhou, C. (2014). A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science, 28(9), 1988-2007.

28.    Song, C., Pei, T.*, & Zhou, C. (2014). The role of changing multiscale temperature variability in extreme temperature events on the eastern and central Tibetan Plateau during 1960–2008. International journal of climatology, 34(14), 3683-3701.

29.    Pei, T.*, Sobolevsky, S., Ratti, C., Amini, A., & Zhou, C. (2014). Uncovering the directional heterogeneity of an aggregated mobile phone network. Transactions in GIS, 18, 126-142.

30.    Pei, T., Gong, X., Shaw, S. L., Ma, T., & Zhou, C. (2013). Clustering of temporal event processes. International Journal of Geographical Information Science, 27(3), 484-510.

31.    Song, C., Pei, T.*, Zhou, C., & He, Y. (2013). Patterns of multiscale temperature variability over the eastern and central Tibetan Plateau during 1960–2008. Acta Meteorologica Sinica, 27(4), 521-540.

32.    Yu, X., & Pei, T.* (2013). Analysis on degree characteristics of mobile call network. Acta Physica Sinica, 62(20), 1-11.

33.    Pei, T., Gao, J., Ma, T., & Zhou, C. (2012). Multi-scale decomposition of point process data. Geoinformatica, 16(4), 625-652.

34.    Wan, Y., Pei, T., Zhou, C., Jiang, Y., Qu, C., & Qiao, Y. (2012). ACOMCD: A multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization. Computational Statistics & Data Analysis, 56(2), 283-296.

35.    Ma, T., Zhou, C., Pei, T., Haynie, S., & Fan, J. (2012). Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China's cities. Remote Sensing of Environment, 124, 99-107.

36.    Pei, T*. (2011). A nonparametric index for determining the numbers of events in clusters. Mathematical Geosciences, 43(3), 345-362.

37.    Pei, T., Wan, Y.*, Jiang, Y., Qu, C., Zhou, C., & Qiao, Y. (2011). Detecting arbitrarily shaped clusters using ant colony optimization. International Journal of Geographical Information Science, 25(10), 1575-1595.

38.    Pei, T., Qin, C. Z., Zhu, A. X., Yang, L., Luo, M., Li, B., & Zhou, C. (2010). Mapping soil organic matter using the topographic wetness index: a comparative study based on different flow-direction algorithms and kriging methods. Ecological Indicators, 10(3), 610-619.

39.    Pei, T., Zhou, C., Zhu, A. X.*, Li, B., & Qin, C. (2010). Windowed nearest neighbour method for mining spatio-temporal clusters in the presence of noise. International Journal of Geographical Information Science, 24(6), 925-948.

40.    Pei, T., Jasra, A., Hand, D. J., Zhu, A. X., & Zhou, C*. (2009). DECODE: a new method for discovering clusters of different densities in spatial data. Data Mining and Knowledge Discovery, 18(3), 337-369.

41.    Pei, T.*, Zhu, A. X., Zhou, C., Li, B., & Qin, C. (2009). Detecting feature from spatial point processes using Collective Nearest Neighbor. Computers, Environment and Urban Systems, 33(6), 435-447.

42.    Pei, T.*, Zhu, A. X., Zhou, C., Li, B., & Qin, C. (2007). Delineation of support domain of feature in the presence of noise. Computers & geosciences, 33(7), 952-965.

43.    Pei, T.*, Zhu, A. X., Zhou, C., Li, B., & Qin, C. (2006). A new approach to the nearestneighbour method to discover cluster features in overlaid spatial point processes. International Journal of Geographical Information Science, 20(2), 153-168.

44.    Pei, T., Zhou, C. H., Yang, M., Luo, J. C., & Li, Q. L. (2004). The algorithm of decomposing superimposed 2-D Poisson processes and its application to the extracting earthquake clustering pattern. Acta Seismologica Sinica, 17(1), 54-63.

45.    Pei, T., Yang, M., Zhang, J. S., Zhou, C. H., Luo, J. C., & Li, Q. L. (2003). Multi-scale expression of spatial activity anomalies of earthquakes and its indicative significance on the space and time attributes of strong earthquakes. Acta Seismologica Sinica, 16(3), 292-303.

46.    Pei, T., Zhou, C. H., Li, Q. L., & Chen, J. B. (2002). Statistical analysis on temporal-spatial correlativity within temporal doublets of strong earthquakes in North China and its vicinity. Acta Seismologica Sinica, 15(1), 56-62.

47.    Pei, T.*, Shu, H., Guo, S., Song, C., Chen, J., Liu, Y., & Wang, X. (2020). The concept and classification of spatial patterns of geographical flow. Journal of Geo-information Science, 22(01), 30-40. (In Chinese)

48.    Pei, T., Guo, S., Yuan, Y., Zhang, X., Yuan, W., Gao, A., Zhao, Z., & Xue, C. Public security event themed web text structuring. Journal of Geo-information Science, 21(01), 2-13. (In Chinese)

Graduate enrolment and training:

Admission Major: Cartography and geographic information system

Admission Direction: Spatiotemporal big data mining; city computing

Welcome the students who have the geography foundation, the mathematics background and the computation programming ability to apply for the examination!

Courses taught at University of Chinese Academy of Sciences: GIS spatial analysis (40h); spatial data mining (21h)

Contact:

Office Address: Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, A11, Datun Road, Beijing 100101, P. R. China

Telephone: 86-10-6488-8960

Fax: 86-10-6488-9630

Email: peit@lreis.ac.cn

Updated on April 2, 2020