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This article uses rough set theory to explore spatial decision rules in neural-tube birth
defects and searches for novel spatial factors related to the disease. The whole rule
induction process includes data transformation, searching for attribute reducts, rule
generation, prediction or classification, and accuracy assessment. We use Heshun as an
example, where neural-tube birth defects are prevalent, to validate the approach. About
50% of the villages in Heshun are used as the sample data, from which all of the rules are
extracted. Meanwhile, the other villages are used as reference data. The rules extracted
from the training data are then applied to the reference data. The result shows that the
rules’ generalization is reasonably good. Moreover, a novel relationship between the
spatial attributes and the neural-tube birth defects was discovered. That is, the villages
that lie in Watershed 9 of this district and that are also associated with a gradient of
between 16� and 25� are vulnerable to neural-tube birth defects. This result paves the road
for predicting where high rates of neural-tube birth defects will occur and can be used as a
preliminary step in finding a direct cause for the disease.
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1. Introduction

Epidemiologists have traditionally used maps when analyzing associations between loca-
tion, environment, and disease (Gesler 1986). GIS is particularly well suited for studying
these associations because of its spatial analysis and display capabilities (Clarke et al. 1996).
Recently, many researchers have concentrated on spatial analysis in epidemiology. In
epidemiology, Graham et al. (2004) introduced a range of techniques relevant to epidemiol-
ogy that are used in remote sensing, GIS and spatial analysis, and gave some suggestions for
possible future directions for the application of remote sensing, GIS, and spatial analysis;
Ostfeld et al. (2005) briefly described approaches to spatial epidemiology that are spatially
implicit; Meng et al. (2005) measured the spatial contagion of severe acute respiratory
syndrome (SARS) in Beijing and tested the different epidemic factors of the spread of SARS
over different periods using spatial statistics; Wang et al. (2006) used geographical techni-
ques to identify and map spatial patterns of risk exposures, and mathematical modeling
techniques to quantify the temporal spread of SARS in Beijing in the spring of 2003; and
Ulugtekin et al. (2007) used GIS for tracking the distribution of measles in a district of
Istanbul and presented the available questionnaire data by means of maps in which the
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relationship and the distribution of individual cases are shown both spatially and over time.
Meanwhile in neural-tube birth defects (NTD), Wu et al. (2004) performed exploratory
spatial data analysis to identify the risk factors for birth defects and found that there were two
typical hot spot clustering patterns that suggest that the risk for neural-tube birth defects
exists at two spatial scales; Li et al. (2006b) used a Bayesian method to investigate the
relationship between the geological background and the occurrence ratio of neural-tube birth
defects; Gu et al. (2007) proposed an approach combining population and hospital-based
methodologies to establish baseline rates for NTD and discuss the risk factors associated
with sociodemographic characteristics, maternal characteristics, as well as geographical
factors; Liao et al.(2008) propose an approach for estimating population based on integration
of Genetic Programming (GP) and Genetic Algorithms (GA) techniques with GIS; and
Wang et al. (2008) use geographical detector-based health risk-assessment methodology to
study the NTD of the Heshun Region, China.

Rough set theory, proposed by Pawlak (1982), is an extension of standard crisp set
theory. In this extension, an uncertain set can be expressed by the lower and upper
approximations, which are defined based on two extreme cases (full inclusion or nonempty
overlap) regarding the relationships between an equivalence class and a target set (Yao
2008). The main goal of the rough set-based analysis is to synthesize an approximation of
concepts from the acquired data (Komorowski et al. 1999). It has been successfully applied
to pattern recognition, machine learning, and automated knowledge acquisition (see,
e.g., Yasdi 1996, Polkowski and Skowron 1998, Polkowski et al. 2000, Leung and Li
2003, Leung et al. 2006). In the field of spatial data analysis, some researchers have argued
for the advantages of using rough sets and have also provided in recent works some
methodologies for handling spatial data. Worboys (1998a, 1998b) discusses an approach
for handling and the reason from such representations using techniques that bear resem-
blance in places to rough set theory. This approach was further developed by Stell and
Worboys (1998) and Bittner and Stell (2002). Wang et al. (2002) simplify and standardize
rough set symbols in terms of rough interpretation and specialized indication, and they
proposed rough spatial entities and their topological relationships in rough space. Thus a
universal intersected equation is developed, and a rough membership function is further
extended with the gray scale in their case study (Wang et al. 2002). For data mining in spatial
databases, Aldridge (1998) has developed a rough set methodology for obtaining knowledge
from multi-theme geographic data and applied the classical rough set method to estimate
landslide hazards in New Zealand. Wang et al. (2001) have employed the rough set method
to discover land control knowledge, with a case study indicating its feasibility. Ahlqvist et al.
(2000, 2003) and Ahlqvist (2005) have also applied the rough set method for spatial
classification and uncertainty analysis. The rough set theory is also used in preprocessing
and the classification of remotely sensed imagery and attributes analysis in GIS (Li et al.
2006a). These studies, however, have not explicitly studied the mining of rules for the
classification of spatial data (Leung et al. 2007). So Leung et al. (2007) proposes a novel
rough set approach for discovering classification rules in general and in remotely sensed data
in particular.

Rough set theory has also been used successfully in medicine. Broadly speaking,
previous applications of rough sets in medicine can be classified into two categories;
diagnosis and outcome prediction, and attribute selection, with an overwhelming majority
of articles falling into the former category (Øhrn 1999). Recently, Wilk et al. (2005) used
rough set theory to select the most relevant clinical features and generate decision rules based
on attributes from a medical data set with missing values. Thangavel and Pethalakshmi
(2006) proposed the Improved Quickreduct Algorithm to select features from the

560 H.X. Bai et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
s
t
 
o
f
 
G
e
o
g
r
a
p
h
i
c
a
l
 
S
c
i
e
n
c
e
s
 
&
 
N
a
t
u
r
a
l
 
R
e
s
o
u
r
c
e
s
 
R
e
s
e
a
r
c
h
]
 
A
t
:
 
0
8
:
0
8
 
1
7
 
M
a
r
c
h
 
2
0
1
0



information system. Su et al. (2006) used rough set theory to select the relevant features from
the data to predict diabetes. Tsumoto (2007) focuses on several models of medical reasoning
that show that the core ideas of rough set theory can be observed in diagnostic models.
However, none of these studies explicitly studied the mining rules between spatial factors
and epidemiology.

In this article, we focus on extracting decision rules in epidemiology using rough set
theory. Birth defects are the major cause of infant mortality and a leading cause of disability.
Preventing birth defects requires a comprehensive a priori and accurate understanding of the
risk factors that correlate to birth defects. As an example, we analyze the NTD that are
prevalent in Heshun, Shanxi, China using rough set theory. Half of the villages in the district
are used as sample data, and the data from the other villages are used as reference data. The
decision rules found in the sample data are used to classify the reference data. The accurate
assessment shows a high agreement between the actual and the identified state if NTD
occured in the villages. We also found novel relationships between the spatial attributes and
the incidence of NTD.

2. Baby-birth defects

Birth defects, formally defined by theMarch of Dimes Birth Defects Foundation, refer to any
anomaly, functional or structural, that presents in infancy or later in life and is caused by
events preceding birth, whether inherited, or acquired. These range from minor cosmetic
irregularities to life-threatening disorders. Birth defects are the major cause of infant
mortality and a leading cause of disability (Carmona 2005). Birth defects can cause lifelong
problems with health, growth, and learning. Most birth defects are thought to be caused by a
complex mix of factors. These factors include our genes, our behavior, and environmental
influences. Some birth defects can be attributed to a specific cause, but most cannot. We also
have a poor understanding of the extent to which factors work together to cause birth defects
(CDC 2008a).

Neural-tube defects are major birth defects of a baby’s brain or spine. They happen
when the neural tube (which later turns into the brain and spine) fails to form correctly,
and the baby’s brain or spine is damaged as a result. This happens within the first few
weeks of pregnancy, often before a woman even knows she is pregnant. The two most
common NTD are spina bifida and anencephaly. These birth defects can result in lifelong
disabilities or death. Many of these defects could be prevented if all women were to
receive adequate levels of B vitamin folic acid on a daily basis, starting from before
becoming pregnant.

Spina bifida occurs when the spine and backbones do not close completely. When this
happens, the spinal cord and backbones do not form as they should. A sac of fluid penetrates
through an opening in the baby’s back. Much of the time, part of the spinal cord is in this sac,
and is damaged. Most children born with spina bifida live full lives, but they often have
lifelong disabilities and need many surgeries. With the right care, most of these children will
grow up to lead full and productive lives.

Anencephaly occurs when the brain and skull bones do not form correctly. When this
happens, part or all of the brain and skull bones are missing. Babies with this defect die
before birth (miscarriage or stillbirth) or shortly after birth. The average cost of caring for a
child born with spina bifida for life is about $636,000.00 per child. This is only an average
cost, and for many families the total cost might be well above $1,000,000.00. More
importantly, the physical and emotional tolls upon the families affected are high as well
(CDC 2008b).
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To find ways to prevent birth defects, we need to know their cause. Research gives us
important clues about the factors that might raise or lower the risk of having a baby with a
birth defect. Those clues help us develop sound public health policies for prevention.
According to the results of research into birth defects, the probability of a birth defect caused
by genetic factors is likely to be similar between regions. However, environmental risk
factors, such as chemicals, toxins, and environmental pollution account for different rates of
birth defects between regions. These environmental risk factors, including socioeconomic
status and geographical elements, often have spatial associations as well as displaying
various patterns. This article attempts to uncover the relationships between spatial attributes
and NTD.

3. Using rough set theory to extract spatial decision rules of birth defects

Rough set theory was first introduced by Pawlak in 1982. It can extract decision rules from a
decision system. A decision system is a special case of an information system. An informa-
tion system, formally, is a pair S ¼ ðU ;AÞ, whereU is a nonempty finite set of objects called
the universe andA is a nonempty finite set of attributes such that a : U ! Va for every a 2 A.
The set Va is called the value set of a. A decision system is any information system of the
form D ¼ ðU ;A¨fdgÞ, where d‚A is the decision attribute. The elements of A are called
conditional attributes or simply conditions. The decision attributes may take several values
though binary outcomes are rather frequent (Komorowski et al. 1999). In epidemiology, the
universeUmay be all the villages of a district, and the decision attribute d can be the state of
the village. For example, one can associate the number 1 with the existence of patients in a
village, with 0 representing no patients in the village. The conditional attribute A can be the
factors associated with the rate of prevalence of a disease, such as the watershed, land use,
and soil type.

3.1. Rough set approximation

In a decision system, two objects in a universe may be indiscernible. For example, we may
have only two attributes associated with each of two patients, their age, and whether either
has a headache. If they are of the same age and neither has a headache, then the two patients
are indiscernible according to these two attributes and they will be treated as the same in the
rough set analysis. Without loss of generality, the indiscernibility relation is based on an
equivalence relationship in classical rough set theory. An equivalence relation is a binary
relation R that is reflexive (xRx), symmetric (xRy) yRx), and transitive (xRy ^ yRz) xRz).
The equivalence class of an element x 2 S consists of all objects y 2 S such that xRy. For the
information system S ¼ ðU ;AÞ, with any B � A, there is associated an equivalence relation
INDSðBÞ ¼ fðx; x¢Þ � U 2j"a 2 B aðxÞ ¼ aðx¢Þg, called the B-indiscernibility relation,
which can also be denoted as INDðBÞ for simplicity. If ðx; x¢Þ 2 INDSðBÞ, then objects x
and x¢ are indiscernible from each other by attributes from B. The equivalence class of the
B-indiscernibility relations is denoted by ½x�B (Komorowski et al. 1999).

The main goal of the rough set analysis is to synthesize an approximation of concepts
from the acquired data. Some concepts cannot be fully defined in a crisp manner by attributes
at hand, e.g., some diseases cannot be fully diagnosed by the symptoms the patient has and
the land cover type cannot be completely classified only by spectral attributes. Rough sets
use upper and lower approximations to describe these uncertain concepts roughly. Formally,
for an information system S ¼ ðU ;AÞ, let B � A and X � U . We can approximate X using
only the information contained in B by constructing the B-lower and B-upper
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approximations of X, denote BX and BX , respectively, where BX ¼ fxj½x�B � Xg and
BX ¼ fxj½x�B˙X��g. The set BNBðX Þ ¼ BX � BX is called the B-boundary region of X.
A set is said to be rough if the boundary region is nonempty, whereas it is crisp if the
boundary region is empty (Komorowski et al. 1999).

3.2. Reduction

The number of attributes at disposal is usually very large in real-life applications. This
number can easily become of the order of a few dozens or even hundreds. So it is necessary
to reduce the number of attributes to a sufficient minimum (Theodoridis and Koutroumbas
2003). In rough set theory, this step is completed by finding reducts. The basic idea of
reducts is to retain only those attributes that preserve the indiscernibility relation and,
consequently, the set approximation. The rejected attributes are redundant because their
removal cannot worsen the classification. There are usually several such subsets of attri-
butes, and those that are minimal are called reducts. Given an information system
S ¼ ðU ;AÞ, a reduct of A is a minimal set of attributes B � A such that
INDðAÞ ¼ INDðBÞ. In other words, a reduct is a minimal set of attributes from A that
preserves the partitioning of the universe and hence the ability to perform classifications
as does the whole attribute set A (Komorowski et al. 1999).

Let S be an information system with n objects. The discernibility matrix of A is a
symmetric n · n matrix with entries cij as given below.

cij ¼ fa 2 AjaðxiÞ�aðxjÞg for i; j ¼ 1; . . . ; n

Each entry thus consists of the set of attributes upon which objects xi and xj differ.
A discernibility function fS for an information system S is a Boolean function of m Boolean
variables a�1; . . . ; a�m (corresponding to the attributes a1; . . . ; am) defined as follows:

fSða�1; . . . ; a�mÞ ¼ ^f_c�ijj1 � j � i � n; cij��g

where c�ij ¼ fa�ja 2 cijg. The set of all prime implicants of fS determines the set of all reducts
of S. Finding a minimal reduct (i.e., a reduct with a minimal cardinality of attributes among
all reducts) is NP-hard (Komorowski et al. 1999). The high complexity of this problem has
motivated investigators to apply various approximation techniques to find near-optimal
solutions (see Skowron and Rauszer 1992, Wroblewski 1995, Komorowski et al. 1999,
Vinterbo and Øhrn 2000, Wang andWang. 2001, Jensen and Shen 2005). In our experiment,
we select a genetic algorithm for finding "-approximate (Vinterbo and Øhrn 2000) reducts.

3.3. Decision rule and classifier

Once the reducts have been found, the rules are easily constructed by overlaying the reducts
over the originating decision table and reading off the values. To facilitate an understanding
of the decision rule synthesis process, some related concepts are given here. Let
D ¼ ðU ;A¨fdgÞ be a decision system and let V ¼ ¨fVaja 2 Ag¨Vd . Atomic formulae
over B � A¨fdg and V are expressions of the form a = v; they are called descriptors over B
and V, where a 2 B and v 2 Va. The set F(B,V) of formulae over B and V is the least set
containing all atomic formulae over B and V and is closed with respect to the propositional
connectives 6 (conjunction), V (disjunction), and: (negation). Given’ 2 FðB;V Þ and’
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is of the form a ¼ v¢, a decision rule for D is any expression of the form ’) d ¼ v, where
v 2 Vd and ’Dk k ¼ fx 2 U jaðxÞ ¼ v¢g (which denotes the meaning of ’ in the decision
table D) is a nonempty set. Formulae ’ and d ¼ v are referred to as the predecessor and the
successor of the decision rule ’) d ¼ v (Komorowski et al. 1999). The decision rules can
also be denoted as if ’ then d = v. All the rules constitute a rule set.

When a set of rules has been induced from a decision table containing a set of training
examples, it can be inspected to see whether they reveal any novel relationships between
attributes that are worth pursuing for further research. Furthermore, the rules can be applied
to a set of unseen cases in order to estimate their classificatory power (Komorowski et al.
1999). In the experiment, the standard voting (Øhrn 1999) is chosen as the classifier.

3.4. Discretization

In the previous sections, it was assumed that the attributes’ values are discretized data. If the
attribute values are continuous, they should be discretized beforehand. Meanwhile, the
discretization step determines how coarsely we want to view the world (Komorowski
et al. 1999). For instance, body temperature, which is usually measured in real numbers,
can be divided into three ranges in medicine. If your temperature is higher than 37.5�C, then
you may have a fever. If your temperature falls between 36�C and 37.5�C, then your
temperature is in a normal state. And if your temperature is less than 36�C, your temperature
is too low. One can easily see that the selection of appropriate intervals and the partitioning
of attribute value sets is a complex problem and its complexity can grow exponentially with
the number of attributes to be discretized. Discretization is a step that is not specific to the
rough set approach but that most rule or tree induction algorithms currently require for them
to perform well (Komorowski et al. 1999).

In earlier days, simple techniques were used such as equal-width (equal-interval) and
equal-frequency (equal-quantile, or, a form of binning) to discretize. As the need for an
accurate and efficient classification grew, the technology for discretization developed
rapidly. Over the years, many discretization algorithms have been proposed and tested to
show that discretization has the potential to reduce the amount of data while retaining or even
improving predictive accuracy. Discretization methods have been developed along different
lines because of different needs: supervised versus unsupervised, dynamic versus static,
global versus local, splitting (top-down) versus merging (bottom-up), and direct versus
incremental (Liu et al. 2002). According to the experimental results obtained by Liu et al.
(2002), it is suggested that if we simply want to discretize data, other things being equal,
entropy (MDLP – the minimum description length principle) should be the first
consideration.

3.5. Modeling process

The whole rough set analysis progress can be divided into four steps (Figure 1): (1) construct
a decision information system based on the data at hand; (2) find minimal reducts of
conditional attributes; (3) generate rules according to the reducts; and (4) apply the rules
to unseen cases and perform error analysis. In the first step, the original data should be
transformed to a decision system. This step is extremely important when rough set theory is
used in spatial data analysis. Most spatial data are presented in a map, so the objects and their
attributes in spatial data should be extracted from maps and presented in table format.
Furthermore, some spatial attributes, which cannot be obtained directly, must be calculated
according to maps. Many spatial attributes are continuous variables. Under such
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circumstances, the continuous attributes should be discretized before performing rough set
analysis. In our experiment, we chose the MLDP algorithm to discretize the continuous
attributes. Next, as is described in Section 3.2, finding reducts is used as the attribute
selection method. Not all attributes transformed or collected previously are the key factors
that are related to the decision attribute. So it is important to select attributes that are in close
relation to the decision. In rough set analysis, the number of conditional attributes is reduced
without impacting the classificatory ability of the decision system, i.e., the minimal set from
all attributes at hand, which preserves the partitioning of the universe as the whole attribute
set does of attributes, is selected. Then, the rules are generated from the two reducts by
overlaying the reducts over the originating decision table and reading off the values. These
rules are the knowledge induced from the decision system and can be applied to unseen
objects to validate its classificatory ability. Therefore, the same attributes of the unseen
spatial objects should be collected according to the original decision system that generates
the spatial decision rules, and also be transformed and discretized in the same way with
original data. Finally, an accuracy assessment of the classification result should be

Orignal data collected Transform
Decision system(table)

Discretization

Discretized table

Computing reduced

Reducted
table 1

Reducted
table 2

Rule generation

Unseen objects
Transform
discretize

Decision system (table)
without decision value

Rules set

Apply to

Reducted
table N

Figure 1. Rough set-modeling process for extracting spatial decision rules of birth defects.
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performed to validate the decision rules’ accuracy. In this article, the training and validation
areas do not overlap spatially.

4. An empirical study

Based on our research, the ratio of birth defect occurrences is estimated to be about 40–50%
in P. R. China. Shanxi province, in the northern region of China, has the highest ratio of NTD
in the world. To reach prepotency, we selected Heshun, one county of Shanxi, as an
experimental region for study (Figure 2). This county lies in the Taihang Mountain region
and forms a relatively closed area. Most of the people in this county are farmers and seldom
change their living environment. Furthermore, there have been no large-scale movements of
people in the history of this region. The inherited and congenital causes of birth defects are

0

0 4 8 16 24 32

0 100 200 4001250 2500 5000
km

km

km

Figure 2. The position of the study area and villages in the study region with their Voronoi polygons.
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similar among the people in this region, and those causes explain only a small fraction of all
the NTD cases. In our experiment, rough set theory is used to study the relationships between
spatial factors, which mostly concern the spatial relationships and spatial attributes, and
NTD. Furthermore, all the villages in the county are divided into two parts. One is used as the
sample area and the other is used as the test area. The decision rules mined from the sample
area are used to identify the decision attribute of the test area, and an error matrix is build to
show its power of identification.

4.1. Data description and transformation

There were 322 villages and one town in the study area. The locations of the 322 villages
were determined by the Geographical Information System for spatial analysis. As there were
no boundaries defined for the villages, we drew them for each village using a Voronoi
polygon (Figure 2). We collected information on both spatial and nonspatial attributes of all
the villages in the test area. For example, the nonspatial data include GDP, number of
children born, number of children who have had NTD, fertilizer use in the area (fertilizer),
access to a doctor (Doctor), production of fruit (Fruit), and production of vegetables
(Vegetables). The spatial data include elevation (Figure 3), soil type, rivers, roads, lithology
type, land cover type (Figure 4), faulting attributes, etc. Some of the spatial attributes, such as
soil type, lithology type, and land cover type, can be used directly in Decision Systems.
However, other spatial attributes, such as rivers, roads, and faulting attributes need to be
transformed in order to analyze the information they carry.

The first step in the rough set analysis model is to transform the data at hand to a decision
system D ¼ ðU ;A¨fdgÞ. We want to inspect which factors closely correlate to the NTD, so
the decision attribute d means whether the village has NTD instances. If the village has not
had at least one instance from 1998 to 2003, then its decision attribute is assigned 1, which
means the village had NTD instances during this period. Otherwise, the decision attribute is

Figure 3. Elevation of the study area.
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assigned 0. Because the main object of this study is to discover the relationships between
spatial factors and NTD, the villages that did not have new babies are not included. So there
are 98 villages that have NTD instances and 217 villages that have had no NTD instances.

The nonspatial conditional attributes used in our experiment include GDP, Doctor, Fruit,
Fertilizer, and Vegetable. According to the GDP, which has been converted into 1970 US
dollars, of the study area, the villages are divided into three groups: villages that have not
entered the first stage of industrialization (GDP , $280), villages that are in the first stage of
industrialization ($280 � GDP , $560), and villages that are in the second stage of
industrialization ($560 � GDP , $1120) (Hollis et al. 1986) denoted as A, B, and C,
respectively. For each village, we also know the number of doctors, the quantity of fruit and
vegetable produced per year, and the amount of fertilizer used on the farms each year. These
attributes are discretized using the MLDP discretization method.

Some spatial conditional attributes are not in need of discretizations. These attributes
include soil type, lithology type, land cover type, gradient, and watershed. The soil type
includes leaching cinnamon soil, cinnamon soil, calcareous cinnamon soil, infant cinnamon
soil, neural lithosols, neural skeletisols and calcareous skeletisols, and fluvo-aquic soil. The
lithology type includes Carbon (C), Changchen (CH), Ordo (O), Permian (P), Quaternary
(Q), Triassic (T), and Wutai (Ar). The land cover type includes grassland, forests, water,
building, agriculture, and others. The gradients in this area are divided into five categories:
0�–8�, 9�–16�, 17�–24�, 25�–32�, and 33�–90�. This district has nine watersheds, denoted as
digits 1–9.

Other spatial conditional attributes are continuous attributes that need to be discretized
before they are used in rough set synthesis. These attributes are the road buffer, river buffer,
fault buffer, elevation, and neighbor. Buffer regions of road, river, and fault zone were built

Figure 4. Landcover of the study area.
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into a GIS environment, with buffer distances of 2, 4, 6, 8, 10, 12, 14, or 16 km. As a result,
the study region was divided into several zones with buffer distance ranges of 0–2, 2–4, 4–6,
6–8, 8–10, 10–12, 12–14, and 14–16 km. The attribute neighbor is the number of adjacent
villages that have NTD instances. These attributes are also discretized using the MLDP
discretization method. Furthermore, for convenience, all the spatial and nonspatial attributes
concerned are summarized in Table 1. In the table, the first column is the name of the
attribute, the second column is the meaning of the attribute, and the last column shows how
the attribute is discretized.

4.2. Rule extraction and identification of unseen objects

First, the genetic algorithm discussed in Section 3.2 is applied to find the minimal reducts.
We obtained two reducts from the decision system built in Section 4.1, each of which
contains three spatial attributes. This means that at least three spatial attributes {watershed,
gradient, neighbor} or {gradient, landcover, neighbor}, should be used to synthesize the
decision rules. So the reducts reduce the number of attributes by 20%. The two reducts share
two common spatial attributes: neighbor and gradient. This attribute is important because the
NTD disease is distributed in clusters spatially. This can be seen from the Moran’s Index
computed in ArcGIS. Its value is 0.06 and Z score is 6.68. There is a less than 1% likelihood
that this clustered pattern could be the result of random chance. It has significant effects on
the classification result. It produces a sound result for attribute selection highlighting the
discriminatory power in different combinations of spatial and nonspatial attributes.

Then, according to the two reducts, we can generate 50 rules using methods introduced
in Section 3.3. These rules, which discovered the relationship between attributes and
decision, are the decision rules. Furthermore, we can use these rules to identify unseen
objects and provide a knowledge base to find the real cause of the disease. Meanwhile, it can

Table 1. Summary of spatial and nonspatial attributes.

Attribute name Meaning
Discretization

method

GDP Average GDP during the 6 years Manually discretized
Doctor The number of doctors of the village MDLP
Fruit The quantity of fruit produced per year of each village MDLP
Fertilizer The quantity of fertilizer used in the farm per year of each

village
MDLP

Vegetable The quantity of vegetable produced per year of each village MDLP
Soil type The main soil type of the village Not discretized
Lithology type The main lithology type of the village Not discretized
Land cover
type

The main land cover type of the village Not discretized

Gradient The gradient calculated from DEM for each village Not discretized
Watershed In which watershed the village lies Not discretized
Road buffer Distance to the main road from the village MDLP
River buffer Distance to the main river from the village MDLP
Faultage buffer Distance to the faultage from the village MDLP
Elevation The altitude of the village MDLP
Neighbor How many neighbor villages have NTD instance from 1998

to 2003
MDLP

Decision
attribute

Whether the village has NTD instances from 1998 to 2003 Not discretized
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supervise the decision maker to make strategies to defend or even control the disease through
changing local environments or improving living conditions. Some disease, which may not
have been recognized or conquered by the human race, can be controlled through changing
some of the factors related to the disease, for example, cholera that was ever prevalent in
London in the mid-nineteenth century.

The classification rules are derived from the villages from which the sample data set is
generated. To test the effectiveness of the rough set method, the remaining villages are used
as reference data for accuracy verification. The composition of the error matrix helps
generate standard accuracy indices, including the producer’s accuracy and user’s accuracy
for individual classes, as well as an overall accuracy and Kappa coefficient of agreement for
the entire data set. The error matrix is summarized in Table 2.

The actual and identified values associated with whether a village has NTD instances are
shown in Figure 5, respectively. There are only four villages in which the identified decision
values and the actual decision values are different, and their identified values are undefined.

5. Discussion

From the error matrix summarized in Table 2, the overall accuracy of the identification is
97.5%. Meanwhile, the user’s accuracies for determining villages that have NTDs and
villages that have no NTDs are 99.1 and 94.0%, respectively, and both producers’ accuracies
are 100%. This shows the high agreement between the actual and the identified decision
data. It has demonstrated that the generalization of the rules is reasonably good or, alter-
natively, that the situation of over-generalization will not occur. Today, the causes of birth
defects in 65–80% of cases are unknown. Without knowing the causes of birth defects, we
are helpless in terms of being able to prevent them. Our lack of knowledge about how to
prevent birth defects is surprising in light of the advances we have made in combating
diseases and death in infants over the past 50 years. Rough set-based rule synthesis can also
be used to identify the outcome in villages yet unseen, based on knowledge found pre-
viously. In our experiment, there are only four villages for which the identifications were
wrong. The four villages, which are called Lingnan, Yinmachi, Yangjuan, and Chanyaogou,
have attribute values that do not appear in the sample data, so they cannot be identified
correctly.

Table 2. Error matrix.

Actual village status

Have no NTD Have NTD Undefined Row total

Identified village status
Have no NTD 106 0 0 106
Have NTD 0 47 0 47
Undefined 1 3 0 4
Column Total 107 50 0 157

Producer’s accuracy User’s accuracy

Have NTD = 100% Have NTD = 99.1%
Have no NTD = 100% Have no NTD = 94.0%
Overall Accuracy = 97.5%
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Although the four spatial attributes in the two reducts {watershed, gradient, landcover,
neighbor} are probably not the direct cause of the NTD, they can be used to identify the NTD
instances. There probably exist underlying relationships between the direct cause of the
disease and the four indices. Many articles have reported extensively on the possible causes
of NTD. These include social, behavioral, and environmental factors, such as smoking,
prescription medication, and alcohol use by pregnant women, as well as conditions that
cause injury that are outside personal control, such as motor vehicle accidents and the
presence of toxic agents in the environment such as radiation, chemicals and metals
(Weicker, L. 1999). In Meng’s doctoral dissertation (2005), it was shown that NTD have
statistically significant associations with geographical factors such as elevation, soil type,
lithology, and watershed. And Li X.H. (2007) proved that areas, which have gradients
between 8� and 24�, are vulnerable to NTD. In our experiment, it can be seen that watershed,
gradient, land cover type, and neighbor can be used to identify the occurrence of the
NTD. We select six rules synthesized by the rough set here, in which the predecessor covers

Figure 5. The actual decision value and the identified decision value.
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at least 10% of the sample, and analyze its effectiveness. The decision rules are summarized
in Table 3, and we also highlight on a map the villages that these six rules identify in the
sample data (Figure 6). In Figure 6, 0 represents villages that cannot be identified by any of
the six rules, 1 represents villages that can be identified by the first rule in Table 3, 2
represents villages that can be identified by the second rule in Table 3, . . ., and, 6 represents
villages that can be identified by the first rule in Table 3.

From these rules, we can see that the neighbor is the key factor that associates with the
occurrence of NTD instances. This is sound, because NTD are always spatially autocorre-
lated, which can be seen fromMoran’s I. But according to the spatial attribute neighbor alone
cannot identify if a village has NTD instances. This can be seen from the rule below:

Watershed ¼ 9ANDGradient between 17� and 24� ANDNeighbor > 2) decision ¼ 1

This rule discovers that if the watershed is 9 and gradient is between 17� and 24� then the
village will have NTD instances. Furthermore, there are also two more rules that are
associated with watershed 9, shown below:

Watershed ¼ 9ANDGradient between 0� and 8� ANDNeighbor > 2) decision ¼ 1

Watershed ¼ 9ANDGradient between 9� and 16� ANDNeighbor > 2) decision ¼ 0

Figure 6. The villages identified by six rules in Table 3 in the sample data.

Table 3. Decision rules.

ID Rule content

1 Watershed = 8 AND Gradient between 0� and 8� AND Neighbor , 2) decision = 0
2 Watershed = 5 AND Gradient between 0� and 8� AND Neighbor , 2) decision = 0
3 Gradient between 0� and 8� AND landcover (33) AND Neighbor , 2) decision = 0
4 Gradient between 0� and 8� AND landcover (32) AND Neighbor , 2) decision = 0
5 Watershed = 8 AND Gradient between 0� and 8� AND Neighbor.2) decision = 1
6 Watershed = 5 AND Gradient between 0� and 8� AND Neighbor.2) decision = 1
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These also support our judgment that the villages that lie in watershed 9 and have
gradients between 17� and 24� are vulnerable to NTD. And to make it clear, we observe
villages that have gradients between 17� and 24� but with the other watersheds. There is only
one such rule: Watershed = 8 AND Gradient between 17� and 24� AND Neighbor . 2)
decision = 0. Therefore, for an unseen village, if it lies in the same watershed or watershed
with a similar geographical condition as watershed 9, and it also has a gradient between 17�

and 24�, then there must be some measures taken on the village. The villages in this
watershed and those that have this gradient may be subjected to some underlying unknown
environmental or social factors that are critical to the occurrence of NTD. For example, if the
gradient is steep, then pregnant women may suffer more unexpected injuries than those
living on flat areas. And there probably exist some types of microelements in the rock in the
area that may directly cause the NTD defect in which the watershed is 9. Meanwhile,
currents are rapid on steep gradients. Therefore, microelements are easily assimilated into
the water and further absorbed by people. For the discussion above, we find that the decision
rules synthesized by rough set analysis are a preliminary step toward identifying the direct
cause of NTD.

Rough set theory is completely data-driven, and needs no prior knowledge. However,
because all the rules are derived from the sample data directly, the rules cannot cover all
possible cases. Hence there are probably undefined cases in the identified result. In this
article, there are four ‘undefined’ villages. These four villages cannot be matched to any
rules derived from the training set. The first undefined village is Lingnan. The gradient of
Lingnan is between 33� and 90� however, because this gradient value does not appear in the
training set. So there is no rule for identifying this village. The second undefined village is
Yinmachi. Because there is no village in the training set that has gradient between 0� and 8�

and, at the same time, has grass landcover. So there is no rule for identifying this village. The
third undefined village is Yangjuan. Although in the training sets there are villages that have
gradient between 0� and 8�, and also possess its building land cover type, there are no
villages that have more than two adjacent villages with NTD instances, therefore it cannot be
identified. The final undefined village is Chanyaogou. Although there are villages that have
a gradient between 9� and 16� and possess watershed 4, there are no villages that have more
than two adjacent villages with NTD instances, thus, it cannot be identified. In our future
work, special attention should be paid to the effective use of at-hand sample data, as well as
attention to methods for designing sample schemes for rule extraction of rough sets.

6. Conclusion

In this article, we propose a general framework based on rough set theory to extract spatial
decision rules for NTD. The spatial decision rules found can be used to identify NTD for
unseen villages. From the accuracy assessment of the identification through an error matrix,
it can be seen that the spatial rules synthesized by the rough set have reasonably good
generalization. On the other hand, as a preliminary step to finding the direct causes of the
disease, many useful conclusions can be drawn from the rules generated. For example, the
rules found in our experiment reveal that the watershed and gradient are important. Then
further in situ inspections and experiments of the area need to be considered in order to
identify the real causes that hide behind the simple relationship. And in our future work, it is
also important to compare the result from rough set theory with results from some traditional
methods, for example, Poisson regression.

Rough set theory is data-driven, and the advantage of this approach is that it does not
require the user to make any a priori assumptions about the data. It can be used to find
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attributes efficiently, a critical step in the decision-making process, through the computing of
reducts. Furthermore, the decision rule generated can be used to predict or classify unseen
objects. In epidemiology, the original data acquired are always accompanied by missing data
or errors. These factors will result in an incomplete decision system or bring inconsistency to
the decision-making system.We can use the extended model of rough set theory to handle an
incomplete or inconsistent decision-making system. For example, the missing data can be
completed or directly analyzed through maximum consistent block technology. The incon-
sistency in the decision-making system can be handled by the concept of a probability rough
set. Sometimes, the attributes are generated from fuzzy concepts. Fuzzy rough set theory can
be used in such situations.
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